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a b s t r a c t

In the present work the single-phase-lagging heat conduction model is re-derived analytically from the
Boltzmann transport equation. In contrast to the Maxwell–Cattaneo law (CV model), it is Galilean invari-
ant in the moving media. Based on this model, the governing equation of the microscale heat conduction
is established, which is formulated into a delay partial differential equation. The corresponding initial and
boundary conditions are prescribed. The thermal oscillation of the single-phase-lagging heat conduction
is investigated.
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1. Introduction

Consider the classical Fourier law in a homogeneous and isotro-
pic thermally conducting medium

qðr; tÞ ¼ �krTðr; tÞ; ð1Þ

where the temperature gradient $T(r, t) is a vector function of the
position vector r and the time variable t, the vector q(r, t) is called
the heat flux, k is the thermal conductivity of the material. This clas-
sical law has been widely and successfully applied to the conven-
tional engineering heat conduction problems, in which the system
has large spatial dimension and the emphasis is on the long time
behavior. However, it leads to the infinite speed of heat propaga-
tion, implying that a thermal disturbance applied at a certain loca-
tion in a heat conduction medium can be sensed immediately
anywhere else in the medium. This is unaccepted in the transient
behavior at extremely short time, say, on the order of picoseconds
to femtoseconds. An example is the ultrafast laser heating in ther-
mal processing of materials.

Experimentally it is also shown that the propagation of second
sound, ballistic phonon propagation and phonon hydrodynamics in
solids at low temperatures depart significantly from the usual par-
abolic description [1]. With the advances of modern microfabrica-
tion technology, more and more microdevices with micro- and
nano-scale dimension emerge in various micromechanical sys-
tems. The understanding of the microscale heat transport phenom-
ena is critical for the further development of the nanotechnology,
especially for the cooling of the large scale integrate circuit.
However, the traditional Fourier law leads to the unaccepted result
ll rights reserved.
for the microscale heat conduction [2–4]. Many phenomena in the
discrete systems including the low-dimensional lattices also chal-
lenge the validity of the classical Fourier law [5–7].

Much effort has already been devoted to the modification of the
classical Fourier law, which leads to many non-Fourier laws. The
most famous one among them is the CV model proposed by Catta-
neo and Vernotte [8–10]:

s
oq
ot
þ q ¼ �krT; ð2Þ

where s is the time delay. The CV model gives rise to a wave type of
heat conduction equation called the hyperbolic heat conduction
equation [11]. The natural extension of this model is

qðr; t þ sÞ ¼ �krTðr; tÞ; ð3Þ

which was proposed by Tzou [12–16]. The constitutive relation (3) is
called the single-phase-lagging (SPL) heat conduction model. The
model (3) was further extended to the dual-phase-lagging (DPL)
model by Tzou and formulated mathematically as follows [1,17–19]:

qðr; t þ sqÞ ¼ �krTðr; t þ sTÞ; ð4Þ

where sT and sq are the phase lags of the temperature gradient and
the heat flux vector, respectively. The first order Taylor expansion of
Eq. (4) gives

qðr; tÞ þ sq
oq
ot
ðr; tÞ ffi �k rTðr; tÞ þ sT

o

ot
½rTðr; tÞ�

� �
; ð5Þ

which leads to the following governing equation of the temperature
field:

Ttðr; tÞ þ sqTttðr; tÞ ¼ aðDTðr; tÞ þ sTDTtðr; tÞÞ; ð6Þ

where the subscript t indicates the partial derivative with respect to
time.
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Nomenclature

f distribution function
k thermal conductivity
r position vector
q heat flux
t time variable
T temperature field
v velocity vector

Greek symbols
s relaxation time
sq phase lag of the heat flux vector
sT phase lag of the temperature gradient
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Eq. (6) plays a significant role in the investigation of the micro-
scale heat conduction. Firstly it is a unified form of the energy
equations of the phonon–electron interaction model [20] and the
phonon scattering model [11,21]. These two models have been
developed in examining energy transport involving the high-rate
heating in which the non-equilibrium thermodynamic transition
and the microstructural effect become important associated with
shortening of the response time [1,22]. The high-rate heating is
developing rapidly due to the advancement of high-power short-
pulse laser technologies [23–27]. In addition to its application in
the ultrafast pulse-laser heating, the microscale heat conduction
equation (6) also arises in describing and predicting phenomena
such as temperature pulses propagating in superfluid liquid he-
lium, nonhomogeneous lagging response in porous media, thermal
lagging in amorphous materials, and effects of material defects and
thermo-mechanical coupling, etc. [1]. The study of Eq. (6) is thus of
considerable importance in understanding and applying these rap-
idly emerging technologies. We have examined its well-posedness
[28,29] and investigated the thermal oscillation and resonance
phenomena in detail [30] which are believed to be a manifestation
of non-equilibrium behavior of microscale heat conduction [22].

Unfortunately, it was shown that the CV model violates the Gal-
ilean principle of relativity [31], thus it cannot be applied to the
moving medium. Therefore, it is desirable to examine whether
the model (3) suffers from the same drawback.

The Boltzmann transport equation (BTE) is a fundamental equa-
tion in statistical physics for describing the non-equilibrium phe-
nomena. Therefore, many efforts are dedicated to establishing
the non-Fourier laws from the BTE. The phonon–electron interac-
tion model [20] was developed from BTE on a quantum mechanical
and statistical basis. A phonon radiative transport equation be-
tween two parallel plates was established from the BTE for the heat
transport in dielectric solid films [3]. Based on the BTE, Chen
[32,33] proposed a ballistic–diffusive heat conduction model of
microscale heat transport in devices where the characteristic
length is comparable to the mean free path of the energy-carrier
and/or the characteristic time is comparable to the relaxation time
of the energy-carrier. The classical Fourier law and CV model were
also re-established from the BTE [4]. Recently, we re-derived the
dual-phase-lagging heat conduction model (4) from the discrete
form of the BTE [34]. In the present work the methodology in
[34] is developed to re-establish the SPL heat conduction model
(3) from the BTE in the partial differential equation form.

Finally, the governing equation of the SPL heat conduction,
which is expressed as the delay partial differential equation, is ob-
tained by combining Eq. (3) with the energy balance equation. The
associated initial and boundary conditions for this equation are
prescribed. The thermal oscillation phenomenon is investigated.
2. Examination of SPL model by Galilean principle of relativity

In [31], it was found that the CV model is not Galilean invariant.
In this section we attempt to examine the SPL model (3). Consider
the following Galilean transformation and some notations:
r0 ¼ r� Ut; t ¼ t; hðr0; tÞ ¼ Tðr0; tÞ; q0ðr0; tÞ ¼ qðr0; tÞ; ð7Þ

where U is the constant velocity between two inertial reference
frames. From the first relation in Eq. (7), it is evident that
rr0 ¼ rr. Therefore, we have

rr0hðr0; tÞ ¼ rrTðr; tÞ: ð8Þ

Subsequently, Eq. (3) becomes

q0ðr0; t þ sÞ ¼ �krr0hðr0; tÞ: ð9Þ

The observation shows that Eq. (9) has the same form as Eq. (3) and
it does not involve the velocity U. Thus the SPL heat conduction
model is invariant under the Galilean transformation (7) and can
be employed to study the microscale heat conduction problems in
moving media. Therefore, compared with the CV model, it has the
obvious advantage.

Note that the first order Taylor expansion of the left side of Eq.
(3) with respect to the time variable gives rise to the CV model (2)
which violates the Galilean principle of relativity. Then one natural
question is whether the higher order approximation of the left side
of Eq. (3) would lead to the Galilean invariant heat conduction
models. In order to address this question, we first consider the fol-
lowing heat conduction model with the lagging behavior:

qðr; tÞ þ s
oqðr; tÞ

ot
þ s2

2
o2qðr; tÞ

ot2 ¼ �krT; ð10Þ

which is obtained by the second order approximation of the left side
of Eq. (3). By the Galilean transformation (7), we have

oqðr; tÞ
ot

¼ oq0ðr0; tÞ
ot

� oq0ðr0; tÞ
or0

� U; ð11Þ

o2qðr; tÞ
ot2 ¼ o2q0ðr0; tÞ

ot2 � 2
o2q0ðr0; tÞ

otor0
� Uþ U � o

2q0ðr0; tÞ
o2r0

� U: ð12Þ

Substituting Eqs. (8), (11) and (12) into Eq. (10) yields

q0ðr0; tÞ þ s
oq0ðr0; tÞ

ot
� oq0ðr0; tÞ

or0
� U

� �

þ s2

2
o2q0ðr0; tÞ

ot2 � 2
o2q0ðr0; tÞ

otor0
� U

"
þU � o

2q0ðr0; tÞ
o2r0

� U
#
¼ �krr0hðr0; tÞ:

ð13Þ
Note that Eq. (13) depends on the constant velocity U. This indicates
that the constitutive relation (10) is not independent on the obser-
ver’s speed, therefore, violates the Galilean principle of relativity.
Similar deductions show that the other higher order approxima-
tions of the SPL heat conduction model (3) suffer from the same
drawback. From the above derivation, one can see that it is the pres-
ence of the time partial derivative in the constitutive relation that
leads to the violation of the Galilean principle of relativity.

3. Boltzmann transport equation and SPL model

3.1. Boltzmann transport equation

In the absence of external forces, the Boltzmann transport equa-
tion reads
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of ðr; v; tÞ
ot

þ v � rf ðr; v; tÞ ¼ df
dt

� �
coll
; ð14Þ

where f(r,v, t) is the probability density of finding a classical
pointlike particle at position r and time t with speed v, (df/dt)coll

represents the rate of change of f(r,v, t) due to collisions. In the
present work the pointlike particles refer to the heat carriers such
as the electrons and phonons. Eq. (14) is obviously incomplete,
since the precise form of collision term is not known. A very sim-
ple method for taking into account collision effects is the relaxa-
tion model. In this model it is assumed that the effect of
collisions is to restore a situation of local equilibrium, character-
ized by a distribution function f0(r,v). It suggests that a situation
initially not in equilibrium, described by a distribution function
f(r,v, t) different from f0(r,v), reaches a local equilibrium condition
exponentially, as a result of collisions, with a relaxation time s.
This relaxation time is of the order of the time between collisions
and may also be written as m�1 where m represents the relaxation
collision frequency. This model can be expressed mathematically
as

df
dt

� �
coll
¼ �ðf � f0Þ

s
: ð15Þ

Therefore, Eq. (14) becomes

of
ot
þ v � rf ¼ �ðf � f0Þ

s
: ð16Þ
3.2. Derivation of SPL model

By using the definition of f(r,v, t), the energy flux vector q can be
expressed as

qðr; tÞ ¼
Z
�

vðr; tÞf ðr; �; tÞ�Dð�Þd�; ð17Þ

where � is the kinetic energy, D(�) is the density of states. The details
of the derivation of Eq. (17) can be found in [34].

By using difference to approximate the time derivative in Eq.
(16), we have

f ðr; �ðvÞ; t þMtÞ � f ðr; �ðvÞ; tÞ
Mt

þ v � rf ðr;v; tÞ ¼ � f ðr; �ðvÞ; tÞ � f0ðr;vÞ
s

:

ð18Þ

Setting Mt = s, yields

f ðr; �ðvÞ; t þ sÞ � f ðr; �ðvÞ; tÞ
s

þ v � rf ðr; �ðvÞ; tÞ ¼ f0ðr; vÞ � f ðr; eðvÞ; tÞ
s

:

ð19Þ

Rearranging the terms of the above equation yields

sv � rf ðr; �ðvÞ; tÞ þ f ðr; �ðvÞ; t þ sÞ ¼ f0: ð20Þ

Multiplying eD(e)v on both sides of this equation and integrating
over all possible energies giveZ

e
sv � rf ðr; eðvÞ; tÞveDðeÞdeþ qðr; v; t þ sÞ ¼ 0: ð21Þ

In deriving this equation, the relationZ
e

f0eDðeÞvde ¼ 0 ð22Þ

has been used. The verification of this assertion was given in [34].
Assume that the relaxation time s does not depend on the en-

ergy of the system and the system has achieved the quasi-equilib-
rium state. Then $f = (df0/dT) $T, thus Eq. (21) becomes

qðr; t þ sÞ ¼ �k � rTðr; tÞ; ð23Þ

where k is the thermal conductivity tensor
k ¼
Z

svv
df0

dT
eDðeÞdDðeÞ: ð24Þ

For the isotropic materials, k takes the form of

k ¼ kI;

here I is the unit matrix and k is a constant. Thus Eq. (23) reduces to
the SPL heat conduction model (3). Therefore, the relation (3) is
derivable from the Boltzmann transport equation. And the thermal
conductivity can be obtained by formula (24).

Note that in order to derive the SPL heat conduction model, Eq.
(19) was employed to approximate the Boltzmann transport equa-
tion (16) and the relation $f � $f0 was assumed in order to obtain
Eq. (23) from Eq. (21). These suggest that the non-equilibrium state
under consideration is not far from equilibrium.

4. Governing equation of SPL heat conduction

In this section, the constitutive relation (3) is directly employed
to establish the governing equation of the SPL heat conduction. A
delay SPL heat conduction equation is thus obtained. After the ini-
tial and boundary conditions are prescribed, the initial-boundary
value problem of the delay SPL heat conduction is formulated.

We start with the following energy balance equation:

�r:qðr; tÞ þ Qðr; tÞ ¼ Cp
oTðr; tÞ

ot
ð25Þ

with Cp being the volumetric heat capacity, Q the volumetric
heat source.
For time instant t + s, Eq. (25) becomes

�r � qðr; t þ sÞ þ Qðr; t þ sÞ ¼ Cp
oTðr; t þ sÞ

ot
: ð26Þ

The divergence of Eq. (3) leads to

r � qðr; t þ sÞ ¼ �kDTðr; tÞ; ð27Þ

where D is Laplacian operator.
Combining Eqs. (26) and (27) gives rise to

DTðr; tÞ þ 1
k

Qðr; t þ sÞ ¼ 1
a

oTðr; t þ sÞ
ot

; ð28Þ

where a ¼ k
Cp

. Eq. (28) is the governing equation of the SPL heat con-
duction based on the constitutive equation (3).

Setting t0 = t + s in Eq. (28), we have

DTðr; t0 � sÞ þ 1
k

Qðr; t0Þ ¼ 1
a

oTðr; t0Þ
ot0

for t0 > s: ð29Þ

Note that this equation is a delay partial differential equation. Here-
after it is termed as the delay SPL heat conduction equation.

Let R be the heat conduction region and Si (i = 1,2,3, . . . ,m) the
boundary surfaces. The boundary condition of Eq. (29) is generally
written as

ki
oTðr; t0Þ

oni
þ hiTðr; t0Þ ¼ fiðr; t0Þ on the boundary surface Si; ð30Þ

where constants ki and hi satisfy k2
i þ h2

i –0; n = (n1,n2,n3)T is the
outward normal of surface S. The general boundary condition (30)
is called the mixed type boundary condition which commonly oc-
curs when a fluid flows over a solid surface to have a convection
boundary condition. It reduces to the specified temperature type
boundary condition when ki (i = 1,2,3, . . . ,m) vanish and to the
specified heat flux type boundary condition when hi = 0
(i = 1,2,3, . . . ,m).

The initial condition for Eq. (29) must be prescribed as follows
[35]:

Tðr; t0Þ ¼ /ðr; t0Þ in the region R; t0 2 ½0; s�; ð31Þ
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note that in order to guarantee the uniqueness of the temperature
field, the initial temperature field must be given in a time period.
This is different from the traditional initial condition for the classi-
cal Fourier law. The detail discuss will be given in another paper. If
the traditional initial condition is still employed for the delay partial
differential equation (29), that is, the distribution of temperature
field is specified only at t = s, then we must set the temperature van-
ish in the time interval [0,s).

By using the relation between t and t0, we have

Tðr; tÞ ¼ /ðr; tÞ in the region R for t 2 ½�s;0�: ð32Þ

When the lagging time s is sufficiently small, initial condition (32) is
equivalent to specify all the time derivatives of temperature field at
the initial moment, namely,

Tðr; tÞjt¼0 ¼ T0ðrÞ;
oTðr; tÞ

ot

����
t¼0
¼ T1ðrÞ;

o2Tðr; tÞ
ot2

�����
t¼0

¼ T2ðrÞ; . . . ;
onTðr; tÞ

otn

����
t¼0
¼ TnðrÞ; . . . ;

ð33Þ

where Tn(r) (n = 0,1,2, . . .) are given functions of the position vector r.
5. Thermal oscillation of SPL heat conduction

Thermal oscillation is a distinct feature of microscale heat con-
duction. In [36], the damping and resonance characteristics of ther-
mal waves were investigated under the CV model. In [30], based on
the approximate dual-phase-lagging model (5), the thermal oscil-
lation phenomena were explored in details. Interestingly, Tzou
[1] and Vadasz [37–40] developed an approximate equivalence be-
tween the heat conduction in porous media and the dual-phase-
lagging heat conduction. Thus the possible occurrence of thermal
oscillation in porous media was examined [37–40]. In the present
work, based on the model (3) the thermal oscillation phenomenon
of the microscale heat conduction is investigated.

5.1. Occurring condition for thermal oscillation

Consider the following single-phase-lagging heat conduction
problem without heat source:

DTðr; t0 � sÞ ¼ 1
a

oTðr; t0Þ
ot0

; t0 > s; ð34Þ

k
oTðr; t0Þ

on
þ hTðr; t0Þ ¼ 0; ð35Þ

Tðr; t0Þ ¼ /ðr; t0Þ; t0 2 ½0; s�: ð36Þ

Setting

Tðr; t0Þ ¼ XðrÞCðt0Þ ð37Þ

and substituting Eq. (37) into Eq. (34) yield

1
a

Ct0 ðt0Þ
Cðt0 � sÞ ¼

DXðrÞ
XðrÞ : ð38Þ

Note that the left side of Eq. (38) is a function with respect to the
time t0, the right side is a function with respect to the position vec-
tor r. Therefore, Eq. (38) suggests that the both sides should be
equal to a constant, say, �b2. Thus we have

Ct0 ðt0Þ ¼ �ab2Cðt0 � sÞ; t0 > s; ð39Þ
DXðrÞ þ b2XðrÞ ¼ 0: ð40Þ

The substitution of Eq. (37) into Eq. (35) gives

k
oXðrÞ
on
þ hXðrÞ ¼ 0; r 2 S: ð41Þ

Eqs. (40) and (41) compose an eigenvalue problem. The solution
gives the eigenvalues bi (i = 1,2, . . .) and the corresponding eigen-
functions Xi(r) (i = 1,2, . . .), which are called as the ith thermal nat-
ural frequency and thermal eigenmode, respectively. By using the
obtained eigenfunctions, we can expand the temperature T(r) into
the following series:

Tðr; t0Þ ¼
X1
i¼1

CðiÞðt0ÞXiðrÞ; ð42Þ

where C(i) satisfies the following ordinary differential equation:

CðiÞt0 ðt
0Þ ¼ �ab2

i C
ðiÞðt0 � sÞ: ð43Þ

The application of the initial condition (36) yields

X1
i¼1

CðiÞðt0ÞXiðrÞ ¼ /ðr; t0Þ; t0 2 ½0; s�: ð44Þ

By the orthogonality of the eigenfunctions, we obtain

CðiÞðt0Þ ¼ /iðt0Þ; t0 2 ½0; s�; ð45Þ

/iðt0Þ ¼
R

R /ðr; t0ÞXiðrÞdRR
R X2

i ðrÞdR
: ð46Þ

Therefore, we get the following ordinary differential equation
problem:

CðiÞt0 ðt
0Þ ¼ �ab2

i C
ðiÞðt0 � sÞ; ð47Þ

CðiÞðt0Þ ¼ /iðt0Þ; t0 2 ½0; s�; i ¼ 1;2; . . . ð48Þ

According to the delay ordinary differential equation theory [35], if

ab2
i s > 1=e; e ¼ 2:71828 . . . ; ð49Þ

then the temperature field demonstrates the oscillation behavior.
Therefore, the condition (49) can be employed to examine the
occurrence of the thermal oscillation of the SPL heat conduction.

5.2. Thermal oscillation for one-dimensional SPL heat conduction

In this section, we consider the following one-dimensional heat
conduction problem based on the SPL model (3):

1
a

oTðx; t0Þ
ot0

¼ o2Tðx; t0 � sÞ
ox2 ; 0 < x < L; t0 > s; ð50Þ

Tð0; t0Þ ¼ TðL; t0Þ ¼ 0; ð51Þ

Tðx; t0Þ ¼ sin
jpx
L
; t0 2 ½0; s�; ð52Þ

where L is the length of the heat conduction medium, j is a fixed po-
sitive integer. By the boundary condition (51), the temperature field
can be expanded into the following series:

Tðx; t0Þ ¼
X1
i¼1

Tiðt0Þ sin
ipx
L
: ð53Þ

Substituting Eq. (53) into Eq. (50) and applying the orthogonality of
the sin series sin ipx

L ði ¼ 1;2; . . .Þ give

dTiðt0Þ
dt0

¼ � ai2p2

L2 Tiðt0 � sÞ; t0 > s ði ¼ 1;2;3; . . .Þ; ð54Þ

Tiðt0Þ ¼ 0; i–j; Tjðt0Þ ¼ 1; t0 2 ½0; s�: ð55Þ

Obviously, Ti(t0) = 0 (i – j), therefore, the temperature field T(x, t0)
can be expressed as

Tðx; t0Þ ¼ Tjðt0Þ sin
jpx
L
; ð56Þ

while Tj(t0) satisfies

dTjðt0Þ
dt0

¼ � aj2p2

L2 Tjðt0 � sÞ; t0 > s; ð57Þ

Tjðt0Þ ¼ 1; t0 2 ½0; s�: ð58Þ
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Setting t* = t0/s in Eqs. (57) and (58), we have

dTjðt�Þ
dt�

¼ �kTjðt� � 1Þ; t� > 1; ð59Þ

Tjðt�Þ ¼ 1; t� 2 ½0;1�; ð60Þ

where k = aj2p2s/L2. By utilizing the initial condition (60) and inte-
grating Eq. (59), the values of Tj(t*) in t* 2 (1,2] can be determined.
Continuing this process, we obtain

Tjðt�Þ ¼
Xn�1

i¼0

ðn� iÞi

i!
ð�1Þikiþ

Xn�2

j¼1

Xn�j�1

i¼0

ðn� i� jÞi

i!
kj

j!
ð�1Þið�1Þjkiðt� �nÞj

þ kn�1

ðn�1Þ! ð�1Þn�1ðt� �nÞn�1þ kn

n!
ð�1Þnðt� �nÞn;

t� 2 ðn;nþ1�; ð61Þ
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t*

0.1

0.2
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T
j(t

* )

Fig. 1. k = 0.2, the variation of Tj(t
*) with respect to t*.
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T j(
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Fig. 2. k = 0.5, the variation of Tj(t
*) with respect to t*.
where n is a positive integer and t* > 1. By the relations t0 = t + s and
t* = t0/s, we have t* = t/s + 1. Accordingly, the initial condition (60)
may be written in the following form:

TjðtÞ ¼ 1; t 2 ½�s;0�: ð62Þ

The formula (61) enables us to determine the temperature field
completely. For k = 0.2, 0.5, 0.8 and 1.0, the dependencies of Tj(t*)
on t* are shown in Figs. 1–4. One can see that when k = 0.2, Tj(t*)
monotonously decreases with the lapse of time. For the case
k = 0.5, Tj(t*) demonstrates the thermal oscillation. This is consistent
with the occurrence condition of thermal oscillation expressed in
(49), that is, k > 1.0/e � 0.3678795. From Figs. 3 and 4, one can see
that when the k increases further, the thermal oscillation becomes
stronger.
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Fig. 3. k = 0.8, the variation of Tj(t*) with respect to t*.
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Fig. 4. k = 1.0, the variation of Tj(t*) with respect to t*.
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6. Concluding remarks

The original SPL heat conduction model complies with the Gal-
ilean principle of relativity. It is also derivable from the Boltzmann
transport equation under the assumptions that no external forces
act on the heat transfer media and the system is at the quasi-equi-
librium. An analytical method is developed to solve the SPL heat
conduction problem. The condition for the occurrence of thermal
oscillation of SPL heat conduction is established analytically. The
thermal oscillation phenomenon is demonstrated by an one-
dimensional SPL heat conduction problem.

It is worth noting that although the SPL heat conduction model
has accounted for the temporal lagging behavior (or memory ef-
fect), it has not addressed the spatial nonlocal effect which is
important in the ballistic heat transport. Recently the extended
irreversible thermodynamics has been employed to establish the
non-Fourier laws which are suitable for the ballistic heat transport
[41–43]. The general equation for the non-equilibrium reversible–
irreversible coupling and the kinetic theory were applied to the
study of the ballistic–diffusive heat conduction [44]. Therefore,
an important topic in the microscale heat conduction is how to im-
prove the SPL heat conduction model and make it suitable for the
ballistic heat conduction.
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